

State of the Map 2018, Milan

Julien Coupey (VERSO) https://verso-optim.com/

July 29th 2018

Julien Coupey July 29th 2018 1/17

Contents

- Context
- Solving approach
- 3 Usage
- 4 Conclusion

Julien Coupey July 29th 2018 2/17

Vehicle routing problems

- TSP travelling salesman problem
 - CVRP capacitated vehicle routing problem (1959)
 - **VRPTW** vehicle routing problem with time-windows (70-80)
 - •
- NP-hard, combinatorial optimization
- Explosion of computing time when problem size increases

Real-life VRP solver requirements

- Real-life routing
- Get near-optimal solutions
- Low computing times
- ► Scale to huge problem instances

July 29th 2018 3 / 17

DATA

ROUTING

OSRN OPEN SOURCE ROUTING MACHINE

/ Profiles

DATA

OPTIM

/ Matrix

ROUTING

OSRM

Profiles

DATA

Timeline

Highlights:

- ▶ **v0.1** Solve TSP with OSRM integration
- ightharpoonup v0.3 Handle "open" trips, improve results on asymmetric problems
- v1.0 Stable API, multi-threading, switch to OSRM v5.*
- v1.1 Support for libosrm
- ▶ v1.2 Multiple vehicles, skills, multi-dimensional capacities, user-defined matrices, exploration level

Julien Coupey July 29th 2018 5/17

TSP

Christofides heuristic (1976) on symmetrized problem

CVRP

Dedicated clustering heuristic using spanning trees

Julien Coupey July 29th 2018 6/17

Local search

Apply modification operators to the heuristic solution

Julien Coupey July 29th 2018 7/17

Relocate

Exchange

Or-Opt

Cross-exchange

2-Opt

Reversed 2-Opt

Local search implementation for CVRP

- ► Basic local search step
 - Evaluate validity/gain for operators on all pair of routes
 - Perform "best" move
 - 3 Re-evaluate only what's necessary until no more improvement is found
- ► Get out of local minimum or deadlock
 - Remove the "worst" jobs for all routes
 - 2 Refill the routes and reapply a local search step
- ► Exploration level ranging from 0 to 5

July 29th 2018 9 / 17

TSPLIB benchmark description

- 78 TSP instances
- ▶ Sizes ranging from 50 to 18,511 points
- ightharpoonup Average size $\simeq 1,170$ points

Hardware

CPU: Intel Xeon E5-1620 @ 3.50GHz, 4c/8t

Julien Coupey July 29th 2018 10 / 17

Results

- ▶ Median computing time: 28 ms
- ► Average gap to optimal solution: +3.0%
- ► Worst gap to optimal solution: +7.6%
- Examples

Instance	Size	Computing time	Gap
kroA100	100	5 ms	+0.0%
kroB200	200	9 ms	+1.7%
d493	493	48 ms	+3.8%
u 1060	1,060	328 ms	+3.0%
u2152	2,152	1610 ms	+4.9%
rl5915	5,915	25.8 s	+2.4%
usa 13509	13,509	\simeq 14 m	+3.0%
d18512	18,512	\simeq 35 m	+2.9%

Julien Coupey July 29th 2018 11/17

CVRPLIB benchmark description

- ▶ 189 CVRP instances
- ➤ Sizes ranging from 15 to 1,000 jobs
- lacktriangle Average size \simeq 240 jobs, number of vehicles ranging from 2 to 207
- ► Average capacity tightness $\left(\frac{\sum job\ amounts}{\sum vehicle\ capacity}\right)$: 0.95

July 29th 2018 12 / 17

Global indicators

Exploration level	0 (fastest)	5 (best)
Median computing time	87ms	1019ms
Longest computing time	9.1s	254.3s
Jobs assigned	99.67%	99.88%
Solutions with all jobs	162 (85.7%)	171 (90.5%)
Best known solutions	8 (4.2%)	30 (15.9%)

Gaps to best known solutions

Only reported for instances with all jobs assigned.

Exploration level	0 (fastest)	5 (best)
Minimum gap	+0.00%	+0.00%
Median gap	+3.95%	+1.35%
Average gap	+4.81%	+2.23%
Worst gap	+21.45%	+12.95%

Julien Coupey July 29th 2018 13 / 17

https://github.com/VROOM-Project

ulien Coupey July 29th 2018 14 / 17

https://github.com/VROOM-Project

Julien Coupey July 29th 2018 14 / 17

https://github.com/VROOM-Project

Julien Coupey July 29th 2018 14 / 17

Command-line

```
$ vroom -i input.json -o output.json -t 4 -x 5
$ vroom -i input.json -g -a router.project-osrm.org -p 80
```

\$ vioom -1 imput.json -g -a fouter.project-osim.org -p 80

http request

Julien Coupey July 29th 2018 15 / 17

Why use VROOM?

- ► Open
 - √ Based on OpenStreetMap data and tooling
 - BSD-licensed
- Efficient
 - Very good solutions
 - √ Very fast
 - √ Scale to huge problem sizes

Work in progress

Timing constraints are scheduled for v1.3.

Julien Coupey July 20th 2018 16/17

Thank you for your attention!

Julien Coupey July 29th 2018 17 / 17