

OSM in Location Science

Jaak Laineste @jaakl

What is CARTO

PIONEERS IN LOCATION INTELLIGENCE

1,200 300K 120+

Customers

End-users

Team members

Accel

EARLYBIRD

Gartner Cool

Vendor 2017

BUILDER

BRINGING LOCATION INTELLIGENCE TO THE MASSES

A self-service business user application for spatial analysis and visualization.

- Built in drag and drop analytics or custom functions
- Both in the cloud and on premise
- Auto-styling and Publishing
- Rapid application deployment
- Publish interactive dashboards that update analysis and filter live

POWER YOUR APPS WITH LOCATION INTELLIGENCE

The one-stop shop for developers to power location applications in their organization.

• Easy-to-use, open source APIs & SDKs

• Location Data Services

Built for developers and designers

• Native and custom analysis libraries

ENGINE APIS

Auth API

Create and manage credentials that grant specific permissions to data and access to APIs for different projects and apps.

SQL API

Interact with your tables and data inside CARTO, as if you were running SQL statements on your own database.

Maps API

Generate maps based on data hosted in your account and customize the SQL, CartoCSS, and other parameters.

Import API

Import files with different formats and manipulate them by using a set of HTTP commands.

Data Services API

Geocode your data and perform other Location Intelligence analysis operations.

DATA OBSERVATORY

DON'T LET YOUR DATA LIMIT YOUR ANALYSIS

Augment your own data and broaden your analysis with thousands of datasets and measurements.

- Demographic segments
- Income, employment, and family datasets
- Real estate and financial data
- Many more...
- But : no OSM (yet)!

Location Science tools

ARTO 2018

Image: xkcd.com/353

Why Python?

- Most popular language for data scientists
- Extremely flexible
- Huge + innovative community

ARTO 2018

Jupyter

"open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text" Given a specific λ , the expected value of an exponential random variable is equal to the inverse of λ , that is:

$$E[Z \mid \lambda] = \frac{1}{\lambda}$$

But what is λ ?

This question is what motivates statistics. In the real world, λ is hidden from us. We see only Z, and must go backwards to try and determine λ . The problem is difficult because there is no one-to-one mapping from Z to λ . Many different methods have been created to solve the problem of estimating λ , but since λ is never actually observed, no one can say for certain which method is best!

CARTO 201

Jupyter notebooks

- The de facto standard for communicating work
- Discovery environment of choice for many data scientists
- Clearly shows reproducible workflows

Geo python goodies

Matplotlib


```
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
map = Basemap(projection='ortho',
              lat_0 = 50,
              lon 0 = -100,
              resolution = 'l',
              area thresh = 1000.)
map.drawcoastlines()
map.drawcountries()
map.fillcontinents(color = 'coral')
map.drawmapboundary()
map.drawmeridians(np.arange(0, 360, 30))
map.drawparallels(np.arange(-90, 90, 30))
plt.show()
```

boroughs = gpd.datasets.get_path('nybb')

import geopandas as gpd

GeoPandas

Folium

Leaflet and Python integrated


```
import folium
import pandas as pd
state_data = pd.read_csv('data.csv')
state geo = 'us states.geojson'
m = folium.Map(location=[48, -102])
m.choropleth(
    geo_data=state_geo,
    name='choropleth',
    data=state data,
    columns=['State', 'Unemployment'],
    key_on='feature.id',
    fill color='YlGn',
    fill_opacity=0.7,
    line opacity=0.2,
    legend_name='Unemployment Rate (%)'
```

```
In [ ]: %matplotlib inline
    import cartoframes
    from cartoframes import Layer, styling, BaseMap
```

CARTOframes

```
cc = cartoframes.CartoContext()
cc.map(layers=Layer('all_month_3'))
```

OSM in CartoFrames

Case study

What are the most popular names in different countries?

- Extract data from OSM global database
- 2. Reduce data size, preprocess, filter, geocode
- 3. Do analysis with Python
- 4. Make a map!
- 5. Rinse, repeat

Data extract - the hard part

- 1. Planet \rightarrow Imposm3 \rightarrow **PostGIS** \rightarrow SQL \rightarrow result UPDATE osm_roads AS r SET $admin2 = (SELECT a.name_iso FROM adm0 AS a WHERE r.geometry && a.geom LIMIT 1);$
 - SELECT admin2, name, count(*) FROM osm_roads GROUP BY name, admin2;
- 2. Overpass API. Can get names, even countries, but output format is tricky *Hard to write queries, too big result*
- 3. "Big Data" as a service providers.
 - **AWS** has OSM Planet, weekly updated, queryable via **Athena SQL**. *No polygon query or custom functions*.
 - **Google BigQuery** *does not have OSM* (yet). But it has user functions, can do point-in-polygon

Winning method

- Download per-country packages from **Geofabrik**
- 2. **Osmconvert** to o5m
- Osmfilter for key stats to CSV
- 4. Sort and head
- 5. Py: transpose data
- 6. Py: make a CartoFrames map

Fast! Convert: few seconds for small country, Italy (1.3G) ~1 minute. Filter: also ~1 minute

Notebook:

https://github.com/jaakla/osm-name-stats

Final map in CARTO:

https://cartomobile-team.carto.com/u/jaakl/builder/166ca721-7c3a-47d6-80d8-7d340e 22b0ab/embed

The most popular placename

1. Preprocessing

The aim of preprocessing is to do heavy processing using million named highways get reasonable data sizes to be

- wget to download per-country osm.pbf files from d geocode' the 35M roads
- osmconvert to get faster to be processed o5m form
- osmfilter to get top 'name' tag values for every cou

Preprocessing steps

CARTO Locations 2018

Key learnings

- Reduce big data to small
- Use preprocessed data
- Preprocess with proper tools
- There are no universal tools for big datasets
- Most tools are not ok for the Planet queries. E.g. PostGIS
- Use optimized formats
- Test with samples
- Some steps remain manual

Read about CARTOframes

Silas Toms, Eric van Rees, and Paul Crickard

Includes a full chapter on CARTOframes

Try yourself

Visit

https://github.com/CartoDB/cartoframe

<u>S</u>

and click launch binder

Thanks!

Jaak Laineste jaak@carto.com / jaak@nutiteq.com @jaakl

Credits: Michelle Ho @ CARTO