

Potential and limitation of using OSM for the creation/validation of Land Use Land Cover (LULC) maps

Cidália Costa Fonte

Department of Mathematics – University of Coimbra, Coimbra, Portugal

Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal

28-30 July 2018 - Milan - Italy

Summary

Introduction

- Ways to use OSM for LULC mapping
 - Convert OSM data into LULC maps
 - Use OSM data to validate LULC maps
 - Use OSM data to train classifiers to create LULC maps from satellite images
- Conclusions
 - Opportunities/Limitations/Future developments

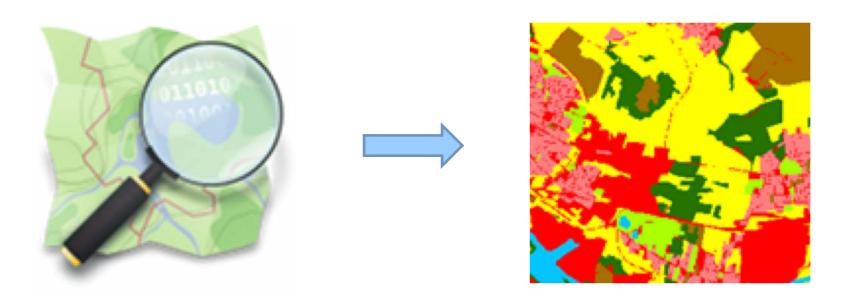
Main aim of the work under development

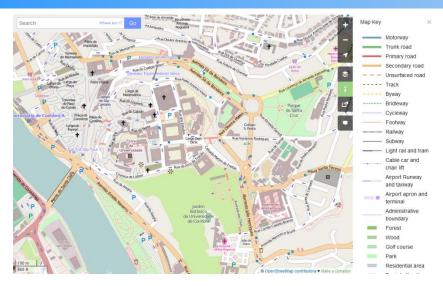
- Add value to available Volunteered Geographic Information (VGI) by either:
 - processing the existing data
 - integrating diverse sources of data
- This work started within COST actions
 - > TD1202 (Mapping and the citizen sensor)
 - IC1203 (European Network Exploring Research into Geospatial Information Crowdsourcing: software and methodologies for harnessing geographic information from the crowd - ENERGIC).

(COST EU-funded programme - enables researchers to set up interdisciplinary research networks in Europe and beyond)

- Volunteered Geographic Information (VGI)
 Pangramio
 - Many types of data
 - Wide variety of projects with very diverse objectives
 - Enormous amounts of data
 - Some enable data download / data accessible by APIs.

How can OSM contribute to the creation / validation of LULC maps?


Production of LULC maps requires


- The classification of images
- When supervised classifiers are used training sets are needed
- The created maps need to be validated
 - The quality assessment usually requires reference data

- OSM may assist the creation and validation of Land Use Land Cover (LULC) maps by
 - Direct creation of LULC maps from OSM
 - Generating reference databases for validation
 - Generating training sets

Speed + lower costs

 Web-application to convert automatically the data available in OSM into a LULC map

OSM – Coimbra (Portugal)

OSM – Praia (Cape Verde)

OSM – Lisbon (Portugal)

 OpenStreetMap (OSM) (<u>http://www.openstreetmap.org/</u>)

- Geospatial entities available in OSM
 - http://wiki.openstreetmap.org/wiki/Map Features

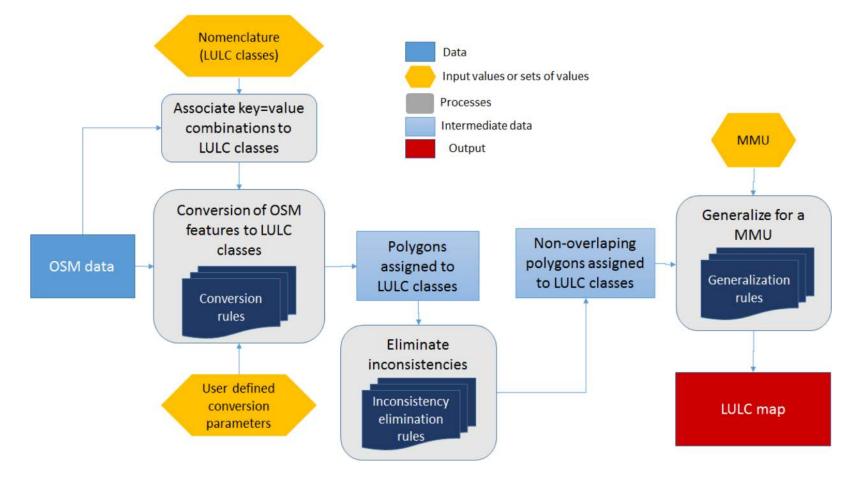
Premier Reference Source

Volunteered Geographic Information and the Future of Geospatial Data

Chura 100 Causes Caryon, Robes Arisons. and Petrog Caroone

Chapter 7 Using OpenStreetMap to Create Land Use and Land Cover Maps: Development of an Application

Cidália Costa Fonte University of Coimbra, Portugal & INESC Coimbra, Portugal


> Joaquim António Patriarca INESC Coimbra, Portugal

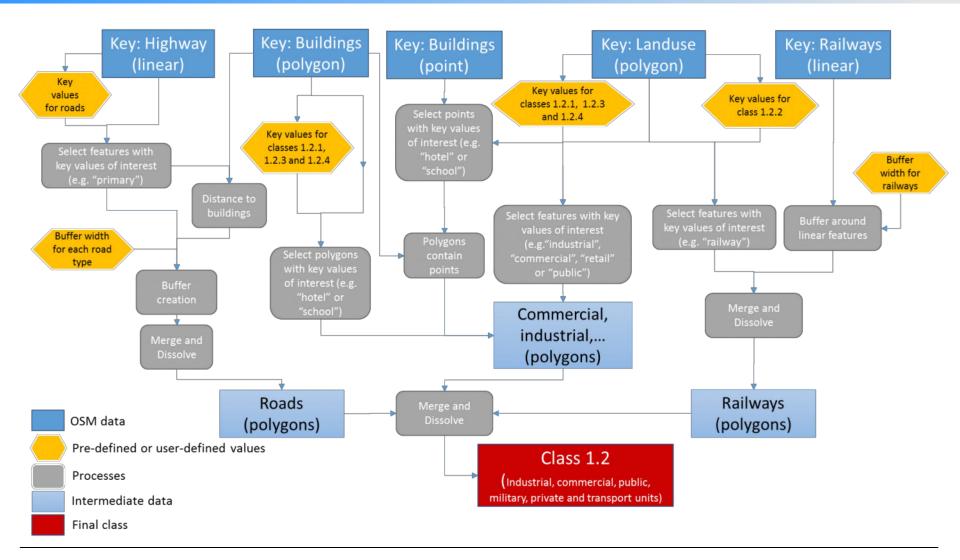
Marco Minghini Politecnico di Milano, Italy Vyron Antoniou Hellenic Military Geographical Service, Greece

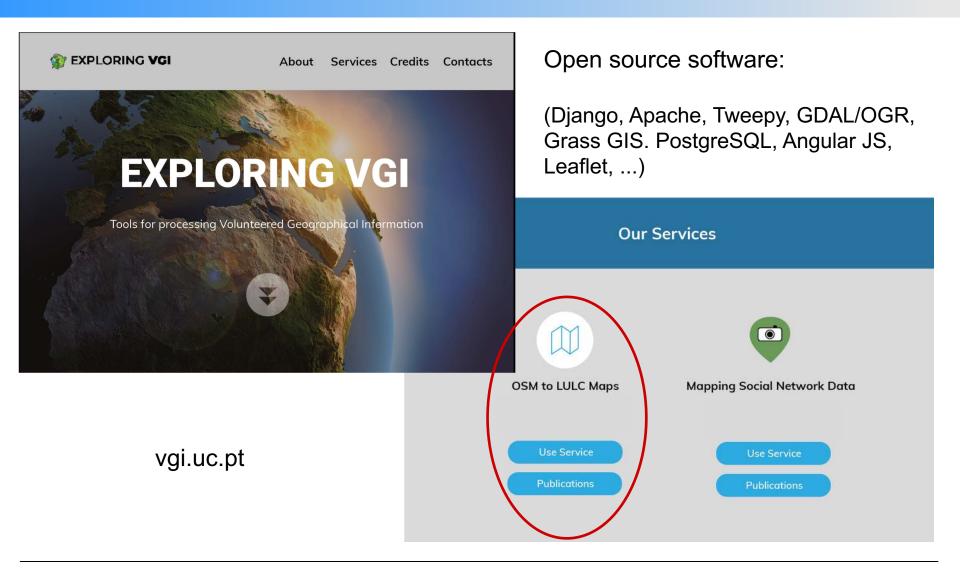
Linda See International Institute for Applied Systems Analysis, Austria

> Maria Antonia Brovelli Politecnico di Milano, Italy

Methodology of the tool created for the conversion of OSM into LULCM

Nomenclatures

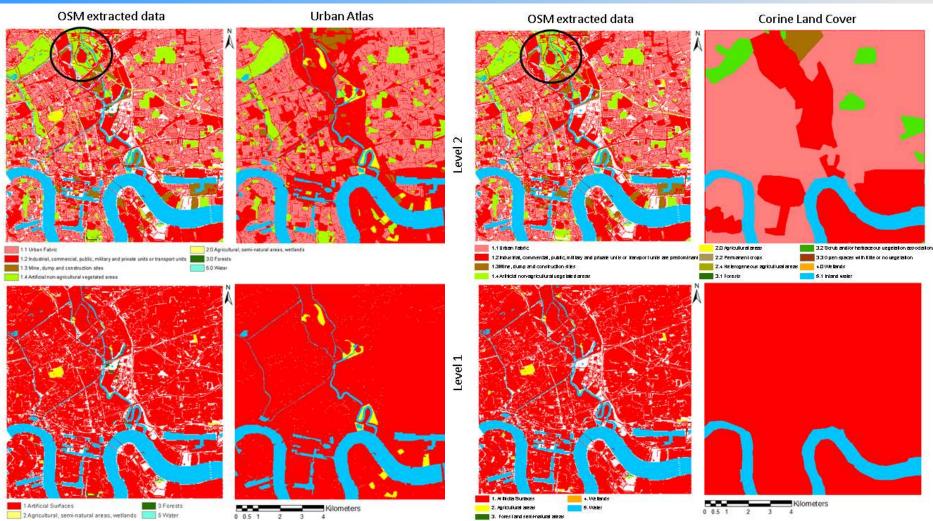

- Urban Atlas (UA) European product
 - Global Monitoring for Environment and Security Urban Atlas
 - Detailed classification of LULC of the European cities with more than 100 K inhabitants + some cities with more than 50 k inhabitants since 2012
 - > 12 thematic classes
- Corine Land Cover (CLC) European product
 - LULC classification of Europe
 - Minimum mapping Unit of 25 ha
 - 44 thematic classes
- GlobeLand 30 (GL30)
 - Map produced by the "National Geomatic Center of China" from Landsat imagery
 - Global coverage
 - Raster format spatial resolution of 30m
 - > 10 thematic classes


OSM conversion to LULC maps UA and CLC nomenclatures

Urban Altas (UA)				CORINE Land Cover (CLC)		
Nível1	Nível 2	Nível 3	Nível 1	Nível 2	Nível 3	
1.Artificial Surfaces	1.1 Urban Fabric	1.1.1 Continuous urban fabric 1.1.2 Discontinuous urban fabric 1.1.3 Isolated Structures	1.Artificial Surfaces	1.1 Urban Fabric	1.1.1 Continuous urban fabric 1.1.2 Discontinuous urban fabric	
	 Industrial, commercial, public, military, private and transport units 	1.2.1 Industrial, commercial, public, military and private units 1.2.2 Road and rail network and associated land 1.2.3 Port areas 1.2.4 Airports			 I.2.1 Industrial or commercial units I.2.2 Road and rail network and associated land I.2.3 Port areas I.2.4 Airports 	
	1.3 Mine, dump and constructio sites	1.3.1 Mineral extraction and dump sites1.3.3 Construction sites1.3.4 Land without current use		1.3 Mine, dump and construction sites	1.3.1 Mineral extraction 1.3.2 Dump sites 1.3.3 Construction sites	
	1.4 Artificial non-agricultural vegetated areas	1.4.1 Green urban areas 1.4.2 Sports and leisure facilities		1.4 Artificial non-agricultural vegetated areas	1.4.1 Green urban areas 1.4.2 Sports and leisure facilities	
2. Agricultural, se	emi-natural areas, wetlands		2.Agricultural areas		2.1.1 Non-irrigated arable land 2.1.2 Permanently irrigated land 2.1.3 Rice fields	
					2.2.1 Vineyards 2.2.2 Fruit trees and berry plantations 2.2.3 Olive groves	
					2.3.1 Pastures	
				areas	 2.4.1 Annual crops associated with permanent crops 2.4.2 Complex cultivation patterns 2.4.3 Land principally occupied by agriculture, with significant areas of natural vegetation 2.4.4 Agro-forestry areas 	
3. Forests			 Forest and semi natural areas 		 3.1.1 Broad-leaved forest 3.1.2 Coniferous forest 3.1.3 Mixed forest 	
				vegetation associations	 3.2.1 Natural grasslands 3.2.2 Moors and heathland 3.2.3 Sclerophyllous vegetation 3.2.4 Transitional woodland-shrub 	
				vegetation	 3.1 Beaches, dunes, sands 3.2 Bare rocks 3.3 Sparsely vegetated areas 3.4 Burnt areas 3.5 Glaciers and perpetual snow 	
			4. Wetlands	4.1 Inland wetlands	4.1.1 Inland marshes 4.1.2 Peat bogs	
					4.2.1 Salt marshes 4.2.2 Salines 4.2.3 Intertidal flats	
5. Water			5. Water		5.1.1 Water courses 5.1.2 Water bodies	
					5.2.1 Coastal lagoons 5.2.2 Estuaries 5.2.3 Sea and ocean	

OSM conversion to LULC maps GlobeLand30 (GL30) nomenclature

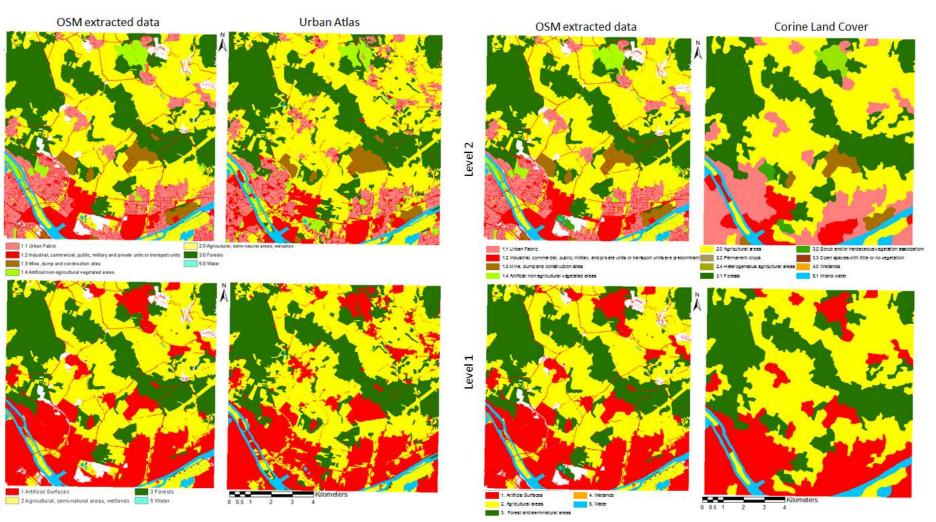
Class Code	Class Name	Class Description	Minimum Mapping Unit (km²)
10	Cultivated land (CL) Arable land (cropland): dry land, paddy field, land for greenhouses, vegetable fields, artificial tame pastures, economic cropland in which shrub crops or herbaceous crops are planted, and land abandoned with the reclamation of arable land		0.0324
20	Forest (F)	Broadleaved deciduous forest, evergreen broad-leaf forest, deciduous coniferous forest, evergreen coniferous forest, mixed broadleaf-conifer forest	0.0576
30	Grassland (GL) Typical grassland, meadow grassland, alpine grassland, de grassland, grass		0.09
40	Shrubland (SL) Desert scrub, mountain scrub, deciduous and evergreen shrubs		0.09
50	Wetland (WL)	Lake swamp, river flooding wetlands, seamarsh, shrub/forest wetlands, mangrove forest, tidal flats/salt marshes	0.0729
60	Water bodies (WB)	Open water: lakes, reservoirs/fishponds, rivers	0.0009 (Rivers) 0.0081 (Lakes)
70	Tundra (T)	Brush tundra, poaceae tundra, wet tundra, bare tundra, mixed tundra	Not provided
80	Artificial surfaces (AS) Settlement place, industrial and mining area, traffic facilities		0.0144
90	Bareland (BL)	Saline-alkali land, sand, gravel, rock, microbiotic crust	0.0324
100	Permanent snow/ice (SI)	Permanent snow, ice sheet and glacier	0.0081



OSM to LULC maps

London

State of the Map 2018 - 28-30 July - Milan - Italy


Level 2

Level 1

OSM to LULC maps

Paris

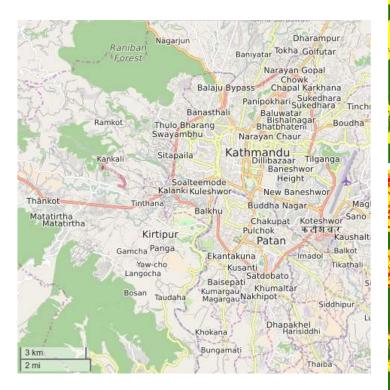
State of the Map 2018 - 28-30 July - Milan - Italy

Level 2

evel 1

Article

Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using OpenStreetMap and GlobeLand30


Cidália Costa Fonte ^{1,2,*}, Marco Minghini ³, Joaquim Patriarca ², Vyron Antoniou ^{4,5}, Linda See ⁶ and Andriani Skopeliti ⁷

- ¹ Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-501 Coimbra, Portugal
- ² INESC Coimbra, Rua Sílvio Lima, Pólo II, 3030-290 Coimbra, Portugal; joaquimapatriarca@gmail.com
- ³ Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; marco.minghini@polimi.it
- ⁴ Hellenic Military Academy, Leof. Varis—Koropiou, 16673 Vari, Greece; v.antoniou@ucl.ac.uk
- ⁵ Hellenic Military Geographical Service, 4, Evelpidon Str., 11362 Athens, Greece
- ⁶ International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A2361 Laxenburg, Austria; see@iiasa.ac.at
- ⁷ School of Rural and Surveying Engineering, National Technical University of Athens, 9 H. Polytechniou, 15780 Zografou, Greece; askop@survey.ntua.gr
- * Correspondence: cfonte@mat.uc.pt; Tel.: +351-239-791-150

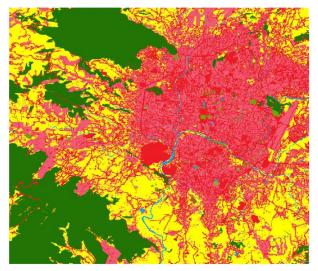
Academic Editor: Wolfgang Kainz

Received: 4 March 2017; Accepted: 17 April 2017; Published: 22 April 2017

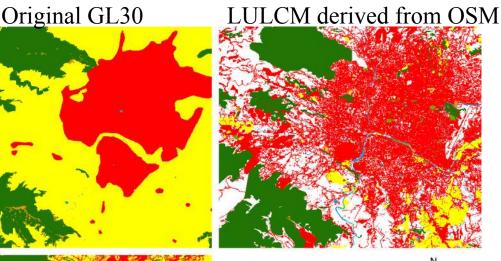
Kathmandu

LULCM derived from OSM

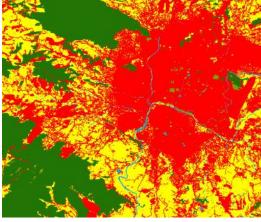
10 km



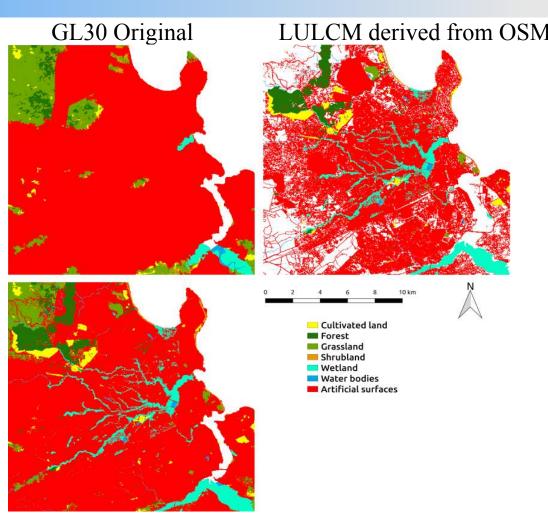
Artificial surfaces


GL30 updated

Kathmandu

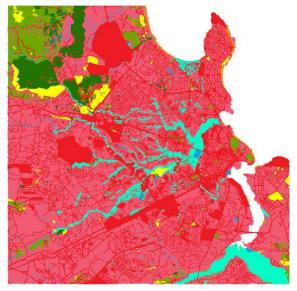

GL30 detailed

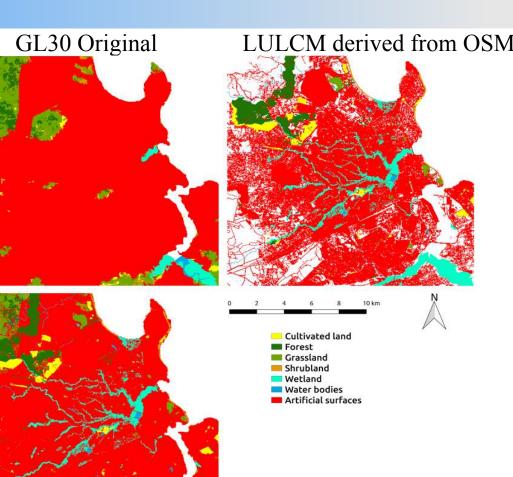
- 💻 Urban Fabric
- Industrial, commercial, public, military, private and transport units
- Mine, dump and construction sites
- Artificial non-agricultural vegetated areas
- Cultivated land
- Forest
- Water bodies
- Grassland
- Shrubland


Cultivated land Forest Grassland Shrubland Wetland Water bodies Artificial surfaces

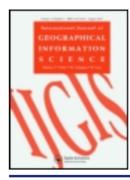
GL30 updated

Dar es Salaam




GL30 updated

Dar es Salaam


GL30 detailed

- 📕 Urban Fabric
- Industrial, commercial, public, military, private and transport units
- Mine, dump and construction sites
- Artificial non-agricultural vegetated areas
- Cultivated land
- Forest
- Water bodies
- Grassland
- Shrubland
- 🔲 Wetland

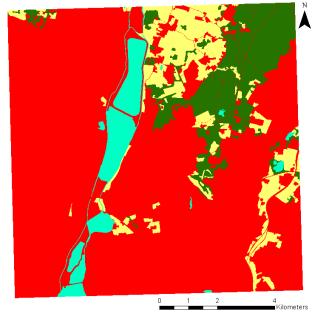
GL30 updated

International Journal of Geographical Information Science Taylor & Francis

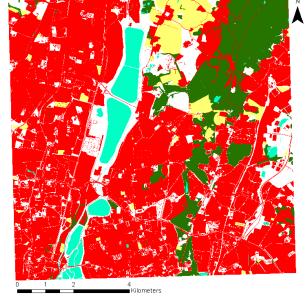
ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20

Assessing the applicability of OpenStreetMap data to assist the validation of land use/land cover maps

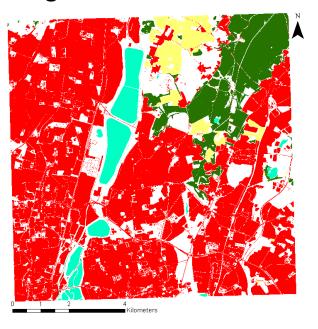
Cidália C. Fonte & Nuno Martinho


To cite this article: Cidália C. Fonte & Nuno Martinho (2017): Assessing the applicability of OpenStreetMap data to assist the validation of land use/land cover maps, International Journal of Geographical Information Science, DOI: <u>10.1080/13658816.2017.1358814</u>

To link to this article: http://dx.doi.org/10.1080/13658816.2017.1358814


Possible approaches

- Direct comparison with a reference map
- Comparison with a reference sample
 - Creation of a random sample of points stratified per class
 - Creation of the **reference** data with:
 - Photointerpretation (PI)
 - Data extracted automatically from OSM + PI
- Accuracy assessment of UA with both reference databases

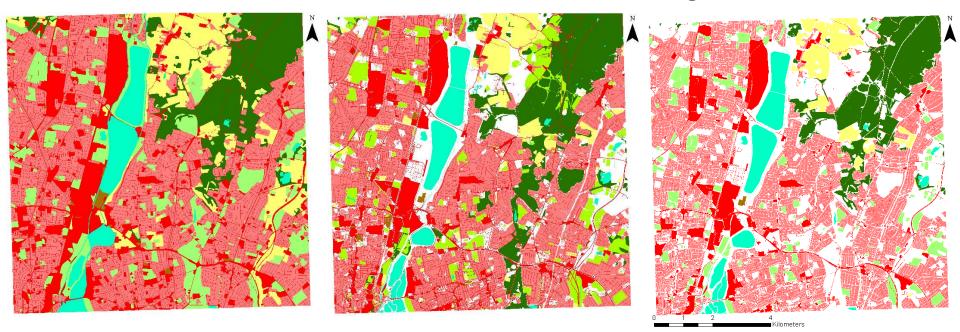

Urban Atlas

OSM extracted LULC

Agreement

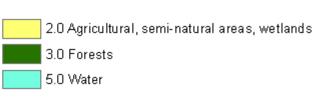
Urban Atlas nomenclature – Level 1

1 Artificial Surfaces


2 Agricultural, semi-natural areas, wetlands

3 Forests 5 Water

Urban Atlas


OSM extracted LULC

Agreement

Urban Atlas nomenclature – Level 2

- 1.1 Urban Fabric
 - 1.2 Industrial, commercial, public, military and private units or transport units
 - 1.3 Mine, dump and construction sites
- 1.4 Artificial non-agricultural vegetated areas

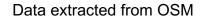
London

	Class	UA	OSM	No data in OSM	NoOSM/UA	NoOSM/Area _{NoOSM}	
	Class		(Area in km ²)		(%)	(%)	
	1	72.84	60.24	11.52	16	67	
Level 1	2	9.99	4.83	3.62	36	21	
	3	11.46	12.91	0.87	8	5	
	5	5.66	4.87	1.12	20	7	
	1.1	39.51	36.15	2.71	7	16	
	1.2	20.28	15.82	4.79	24	28	
	1.3	0.38	0.26	0.19	50	1	
Level 2	1.4	12.68	8.01	3.83	30	22	
	2.0	9.99	4.83	3.62	36	21	
	3.0	11.46	12.91	0.87	8	5	
	5.0	5.66	4.87	1.12	20	7	

NoOSM/UA - Percentage of area per class with no data in OSM relative to class area in UA

NoOSM/Area_{NoOSM} - Percentage of area per class with no data in OSM relative relative to the total area of the regions with no data in OSM

	UA versus OSM				
	Class	MPA _{OvOSM} (%)	MPA _{OvUA} (%)	TPA _{Ov} (%)	
	1	95	93		
T 11	2	71	71 54		
Level 1	3	74	90	90	
	5	92	98		
	1.1	86	84		
	1.2	63	64 33	76	
	1.3	24			
Level 2	1.4	59	53		
	2.0	71	54		
	3.0	74	90		
	5.0	92	98		


MPA (i) = Area of class i in OSM derived data that is in agreement with UA

$MFA_{0vOSM}(t)$	Total area of class i in OSM derived data	Т. П. И. —	Area of agreement between UA and OSM derived data
		$TPA_{Ov} =$	Total area with data in the OSM derived map
MDA (i) –	Area of class i in UA that is in agreement with the OSM derived do	ıta	
$MPA_{OvUA}(i) =$	Total area of class i in UA where OSM data exists		

Urban Atlas

Sample points + satellite images

^{8 8/25 8.6 7}

1.2 Industrial, commercial, public, military and private units or transport units

1.3 Mine, dump and construction sites

1.4 Artificial non-agricultural vegetated areas

2.0 Agricultural, semi-natural areas, wetlands

3.0 Forests

5.0 Water

		Producer's accuracy (%)		User's accuracy (%)		Overall accuracy (%)	
	Class	UA vs. PI	UA vs. OSM/PI	UA vs. PI	UA vs. OSM/PI	UA vs. PI	UA vs. OSM/P
Study area	A						
Level 1	1	97 [96,98]	93 [92,94]	83 [80,86]	86 [82,89]	84 [81,87]	84 [81,87]
	2	65 [47,82]	69 [48,90]	78 [75,81]	59 [56,62]		17 L 182 L 195
	2 3 5	58 [44,71]	58 [44,72]	93 [91,95]	88 [86,90]		
	5	76 [54,97]	75 [53,96]	96 [95,97]	96 [95,97]		
Level 2	1.1	83 [79,88]	85 [81,89]	80 [75,85]	84 [79,89]	75 [71,79]	74 [71,78]
	1.2	70 [60,81]	72 [61,82]	64 [60,68]	65 [61,69]		
	1.3	36 [1,71]	21 [0,46]	43 [42,44]	27 [26,28]		
	1.4	64 [50,78]	52 [42,62]	47 [43,51]	51 [47,55]		
	2.0	67 [57,77]	71 [59,83]	78 [75,81]	59 [56,62]		
	3.0	67 [61,73]	68 [61,74]	93 [91,95]	88 [86,90]		
	5.0	86 [77,95]	84 [75,94]	96 [95,96]	96 [95,97]		
Study area	B		99 - 1979 - 1989 - 1979				
Level 1	1	88 [84,92]	88 [85,92]	79 [77,81]	85 [83,87]	89 [86,92]	89 [86,93]
	2	88 [83,92]	89 [84,94]	91 [87,95]	88 [84,92]		
	3	91 [84,96]	92 [87,98]	96 [94,98]	95 [93,97]		
	5	100 [100,100]	66 [40,92]	83 [82,84]	92 [91,93]		
Level 2	1.1	86 [80,92]	68 [62,74]	71 [68,74]	84 [81,87]	86 [83,89]	83 [81,87]
	1.2	64 [52,77]	70 [56,84]	72 [69,75]	60 [57,63]		
	1.3	67 [41,93]	53 [34,72]	49 [47,51]	70 [68,72]		
	1.4	74 [57,91]	53 [0,100]	73 [71,75]	9 [8,10]		
	2.0	89 [86,92]	90 [87,94]	91 [87,95]	88 [84,92]		
	3.0	91 [86,96]	93 [88,98]	96 [94,98]	95 [93,97]		
	5.0	100 [100,100]	68 [43,93]	83 [82,84]	92 [91,93]		

Training sets creation with OSM

Possible approaches

- Training classifiers using all data extracted from OSM
- Select regions from OSM to train classifiers
 - Requires quality / reliability assessment

Training sets creation with OSM

Approaches tested:

- Use NDVI (Normalized Difference Vegetation Index) to identify regions with and without vegetation from the training sets
- Identify regions where there are more than one possible LULC class in OSM and exclude them from the training set
- Select a few regions for training instead of using all obtained data for each class

Training sets creation with OSM

Results:

- In some cases the accuracy of the LULC maps obtained is similar to the ones obtained with the manual identification of training sets
- The results <u>depend</u> a lot on the nomenclature (LULC classes) used

OSM contribution to LULC mapping Opportunities

- Automate the creation and validation of LULC maps - less expert intervention
 - Faster
 - > Cheaper
- Have more current LULC maps
- Facilitate the creation of high resolution LULC for regions of the world where they are not available

OSM contribution to LULC mapping Opportunities

OSM

- Large quantities of available data
- Low costs associated to data collection
- The dynamic characteristics of this type of data enables the collection of updated data
- Citizens may have local knowledge
 - May provide more reliable data

OSM contribution to LULC mapping Limitations

Main problems:

- Lack of data in many places where this would be more useful
- Data Quality
 - Traditional aspects of geospatial data quality
 - Positional accuracy, Thematic accuracy
 - Completeness
 - Logical consistency
 - > Temporal consistency
 - > ...

OSM contribution to LULC mapping Limitations

- Data Heterogeneity
 - The available data may have different levels of quality (detail, accuracy, completeness,...) associated to:
 - Different regions
 - Data provided by different volunteers
 - At different time stamps
 - For different classes
 -
- Data inconsistencies, such as:
 - Overlapping polygons with different meanings

OSM contribution to LULC mapping Future work

- Improve the tools created so far
 - Conversion process for some types of features / classes
 - Keep working on the extraction of reliable data for classifiers training
- Integration with other sources of data

GET INVOLVED IN CONTRIBUTING WITH DATA TO OSM!!

Youthmappers?

A group for HOT?

Mapping parties?

Thank you !

Cidália Costa Fonte

Department of Mathematics – University of Coimbra, Coimbra, Portugal

Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal

28-30 July 2018 – Milan - Italy